NSM Cryptographic Recommendations 2024 draft

This is a draft version of an updated version of the NSM Cryptographic Recommen-
dations.

This draft is circulated with the purpose of providing advance guidance and with a
request for feedback. It is not a currently official recommendation, and there can be several
changes before this recommendation is finalized. Version 1.0 of the NSM Cryptographic
Recommendations are the currently applicable recommendations.

Norwegian National Security Authority (NSM) 1

NSM Cryptographic Recommendations 2024 draft

Contents
I__Introductionl 3
I __General advicel 6
[L Cryptographic computing] 6
1.1 Implementations| 6
[L.2 Side-chanmel attacks o o 6
[1.3 Cryptographic inventory| L 6
[1.4 Cryptographic agility|. 7
2 Key management)| 7
2.1 Key generation| 7
2.2 Certificates 8
2.3 Key distribution| 8
2.4 Keyusel 8
3 Random number generation| 8
4 Quantum computing) 9
(IIT Algorithms| 11
5 Symmetric cryptography| 11
.1 General purpose encryption| Lo 11
5.2 Disk encryption| 12
H Bl e 13
5.4 Message authentication|. 0L 13
b.5 Key derivation| 14
5.6 Password hashing| o 14
6 Asymmetric cryptography| 15
I y yptograp
6.1 Key establishment| 0 0. 15
6.2 Digital signatures|o 17
7 Quick reference| 18
B_Protocols 19
|IA Standards and standards organizations| 21

Norwegian National Security Authority (NSM) 2

NSM Cryptographic Recommendations 2024 draft

Part 1
Introduction

Document history:

Year Changes from the previous version

2018

2024 Fundamental rewrite. Introduced
quantum-resistant algorithms. Added
more complementary text. Removed a
number of options for algorithms.

This document provides recommendations and guidance for cryptographic mechanisms
used to protect information and information systems. These recommendations apply to un-
classified information as well as classified information up to and including BEGRENSET.
Any information system which protects classified information must be evaluated and ap-
proved by NSM on a case-by-case basis. While it is the belief of NSM that the recommen-
dations in this document provide a sufficient level of security, at least from a cryptographic
point of view, any system should be thoroughly tested and its security claims evaluated by
experts. Simply following these recommendations is not sufficient on its own.

This document gives simple recommendations which are intended to cover most use
cases. By design, few options are presented, and choosing between them should be based
on non-cryptographic factors such as software availability and interoperability concerns.

The purpose of this document is not to be an exhaustive list of reasonable cryptographic
mechanisms, and there are scenarios where the appropriate mechanism is not found in this
document. Anyone finding the recommendations in some way lacking or otherwise unfit
for their use case is welcome to contact NSM with any questions they may have.

It is advised that anyone planning to build a system which involves cryptography
contacts someone with cryptographic expertise early in the process, and this document
can be used as a starting point for a discussion with such experts.

Target audience

This document addresses those who work with IT security but do not have a background
in cryptography. They must know about certain aspects of cryptography but do not need
to know the technical details of how or why various cryptographic mechanisms work.

One important purpose is to be a resource during an acquisition process. When ac-
quiring a system which involves cryptography, an organization can point to this document
and require that the system follows these recommendations.

This document also contains information for I'T security leaders and developers about
requirements for cryptography to provide actual security outside of the algorithms them-
selves. This includes generating random numbers, as well as managing cryptographic keys
and cryptographic software.

Interoperability

Interoperability is an important constraint facing many system owners. These recom-
mendations are primarily intended for when someone controls every part of the system.
However, some comments on interoperability is in order.

Norwegian National Security Authority (NSM) 3

NSM Cryptographic Recommendations 2024 draft

Many organizations have to securely communicate with other entities, and here one
must agree on which cryptographic mechanisms to use. For a number of reasons one might
be forced to use certain mechanisms.

Another area where interoperability concerns are important comes to support for dif-
ferent mechanisms in different software/hardware platforms. It can be the case that the
algorithms implemented on a particular platform for certain use cases are not listed in this
document, but integrating other mechanisms is difficult or expensive.

It is crucial to minimize the security impact of such interoperability concerns. An as-
sessment from an expert about the security of the interoperable cryptographic mechanism
forms a useful starting point for further decisions. Additionally, interoperability concerns
must not be used as an excuse to use insecure cryptography beyond what is strictly nec-
essary.

The contents of this document

Using cryptography to protect information requires algorithms which give a mathematical
description of how to protect information, and the implementation and integration of those
algorithms in a computer system.

On the algorithm side, there are well-established solutions with a high degree of confi-
dence in their security. However, if those algorithms are implemented or integrated without
proper care, that can provide an entry point for an attacker. Implementing cryptography
is difficult, and should not be done without a high level of competence. For this rea-
son, users of cryptography should rely on well-tested libraries and not create their own
implementations.

This document consists of two main parts. The first part advises about points that are
important to consider when handling cryptography. This is rather generic advice about
which aspects one needs to consider beyond just the choice of algorithms. The second part
contains recommendations for which algorithms to use for specific purposes.

Security levels

Most cryptographic mechanisms have a certain flexibility when it comes to the choice
of parameters, where different sets of parameters have different efficiency and security
properties.

The metric that is typically used to quantify security is how many operations on a com-
puter are needed for an attacker to break a security property, such as finding the message
given an encryption of that message, using the best-known attack. When a cryptographic
mechanism is said to have “n bits of security”, this means that an attacker needs to exe-
cute approximately 2" operations to break a security property. The security level of the
mechanism is not always clear from the size of the parameters used.

To give context for what is achievable, the Bitcoin network, a large distributed col-
lection of highly specialized computers, computes approximately 2% operations per year,
so schemes providing 94 bits of security could be broken by an attacker with the same
resources in about a year. Each added bit of security doubles the resources needed, so such
an attacker would need to work for approximately 17 billions of years to break a scheme
providing 128 bits of security.

The recommendations for cryptographic mechanisms in this document come with pa-
rameter sets that all aim to provide at least 128 bits of security. NSM believes that all
recommended parameter sets in this document provide an adequate security level for the

Norwegian National Security Authority (NSM) 4

NSM Cryptographic Recommendations 2024 draft

scope of these recommendations. When selecting a parameter set for a particular mech-
anism, the advice is to select the highest parameter set that does not have a noteworthy
impact on the performance of the system. Note that what is acceptable will vary from
mechanism to mechanism, as different mechanisms need differently sized parameters to
reach a similar security level.

It is worth pointing out that simply selecting a parameter set with a higher security
level does not necessarily provide an increase in total security, as algorithmic security is
only one part of secure use of cryptography.

Norwegian National Security Authority (NSM) 5

NSM Cryptographic Recommendations 2024 draft

Part 11
General advice

1 Cryptographic computing

While cryptographic mechanisms are described as mathematical algorithms, they need to
be implemented in the real world if they are going to protect actual information. This
means that the algorithms run on a physical device (be it a regular computer or some spe-
cialized cryptographic hardware), and are often integrated into a complex piece of software.
It is exceedingly rare that attackers break the algorithms themselves, and significantly more
common that they exploit vulnerabilities in implementations of the algorithms or that they
simply bypass the cryptography in some way. There is no recipe to follow to handle these
things properly, but what follows are some key aspects to keep in mind.

1.1 Implementations

Implementing cryptography requires a lot of expertise. For this reason, users of cryptogra-
phy should not create their own implementations. They should instead rely on pre-existing
implementations developed and maintained by experts, where there is a lot of confidence
in the security of the implementation.

It is recommended to use cryptographic software and hardware which has been eval-
uated and certified, such as via Common Criteria or according to ISO/IEC 19790 (FIPS
140-3). Cryptographic software should take advantage of any dedicated cryptographic
hardware on a device.

1.2 Side-channel attacks

One category of attacks against cryptographic mechanisms are side-channel attacks. These
attacks exploit information that is leaked when a computer uses a secret key to do a
cryptographic operation. Some examples of information which can be exploited are the
duration of an operation, the power used during the operation, and the memory accesses
made during the computation.

Different attacks require differing levels of access. An attack which exploits the time it
takes to perform an operation can possibly be done across the internet, but to exploit the
power consumption of a device an attacker must be physically close to it.

There are several countermeasures which defend against different kinds of side-channel
attacks, and an implementation must apply the countermeasures against the threats it
is reasonable to protect against. There are, for example, relatively few cases where the
expensive countermeasures that make it harder to exploit power consumption are necessary,
but many cases where it is important to protect against attacks which exploit the duration
of an operation.

1.3 Cryptographic inventory

It is recommended to have a detailed overview of the cryptography involved in a system.
This overview should include which data is protected by cryptography, and how cryptog-
raphy protects the data (such as whether it is protecting the confidentiality, integrity or
authenticity of some data). It is also important to know which cryptographic software
and hardware is involved in the system, where they come from, and which algorithms they

Norwegian National Security Authority (NSM) 6

NSM Cryptographic Recommendations 2024 draft

use. If the system’s cryptographic solutions are purchased from outside vendors, it is also
important to keep track of which vendors delivered which solutions, and the details of the
agreements with each vendor concerning maintenance and upkeep.

1.4 Cryptographic agility

An important concept to be aware of and try to follow is that of cryptographic agility.
This means that it should be relatively easy to change the cryptographic elements of a
computer system in response to newly discovered attacks, whether on an algorithmic or
implementation level. If an algorithm is found to be weak, it should be possible to change
to a different algorithm with the same functionality without requiring a complete redesign
of the system. The same should be the case if the library one uses stops being maintained
or one needs to switch to a different vendor.
Some important aspects of cryptographic agility:

e Systems should, as far as possible, not depend on properties specific to one mecha-
nism, such as the size of various objects.

e Source code should be modular. This means that the source code should simply
call functions with names named after their functionality, like encrypt and decrypt.
Now changing the algorithms used just involves changing those functions instead of
the entire code base.

It is worth noting that in some cases, being cryptographically agile can be infeasible due
to long-lived hardware which is difficult to modify. In these cases, additional care is needed
at the design stage to reduce the possibility and impact of new attacks on algorithms or
implementations.

2 Key management

Key management is essential for the proper use of cryptography. If cryptographic keys are
not securely generated, protected, used, and deleted after use, the cryptographic mecha-
nisms provide no security. There are several kinds of cryptographic keys, each with their
requirements. Most keys must be kept secret, this means protecting the confidentiality
and authenticity of those keys, as well as protecting them against unauthorized use. Some
keys are made public, but protecting their authenticity is vital.

To accomplish these goals one needs to examine the entire key life cycle, from the
generation of key material through to its secure deletion or destruction. NIST SP 800-57
Part 1 |20] provides a framework for describing key management and is a relevant reference
for further information.

2.1 Key generation

Cryptographic keys are generated at random. In general, a key for a symmetric mechanism
is a randomly generated bit string of a specified length. For asymmetric mechanisms, a
key pair is randomly generated by an algorithm specific to that mechanism. The recom-
mendations in Section [3| should be followed when generating keys.

Norwegian National Security Authority (NSM) 7

NSM Cryptographic Recommendations 2024 draft

2.2 Certificates

Certain keys need to be associated with their owner. For example, some public keys are
linked to their owner by certificates. Such a certificate can also include useful metadata
specifying how and when a public key can be used.

By issuing a certificate, a certificate authority (CA) guarantees that a specific key
belongs to a specific entity. However, one needs to trust the CA and its public key, which
is itself authenticated by another CA. This creates a certificate chain.

At the end of the chain is a root certificate authority. These root certificates must be
securely distributed to relying parties and signatories by including them in applications, or
having them downloaded from an authoritative source (e.g. a designated public authority),
all to invoke trust.

2.3 Key distribution

Keys need to be distributed. For symmetric cryptography, two parties must possess the
same key. This key needs to be transported securely at least once (using a scheme recom-
mended in Section or agreed upon using a key establishment scheme (using a scheme
recommended in Section |6.1]). For systems based on asymmetric cryptography, the private
key is typically generated where it is to be used, hence no transport is needed.

Secret keys must be securely installed and stored, separate from the data they protect.

2.4 Key use

The goal of key management is to put keys in place such that they can be used for a certain
period. During the lifetime of a key, it has to be protected against unauthorized use by
attackers. The key must also be protected against unauthorized use by the owner of the
key: The owner of the key should not be allowed to export the key or use it in an insecure
environment.

Cryptographic keys expire and are replaced. There are situations where keys have to
be discarded ahead of their planned end of lifetime, e.g. if secret keys leak to outsiders or
if developments in cryptanalysis make schemes insecure. After the end of their operational
lifetimes, or if they have been compromised, keys should be erased in a manner that
removes all traces of the keys so that they cannot be recovered by either physical or
electronic means.

3 Random number generation

Randomness is a core element of many cryptographic mechanisms. Random values are
needed for generating cryptographic keys and as additional inputs in many cryptographic
algorithms and protocols.

A mechanism which generates a sequence of random bits is referred to as a random
number generator (RNG). The random values must be cryptographically secure, meaning
that no one can accurately predict any bit in the sequence, even if they can see any other
bits in the sequence.

To generate cryptographically secure randomness one first gathers a number of random
bits based on a physical process. This process must have sufficient entropy, a measure
of the amount of randomness in the process. These bits are then used as a seed for a
suitable pseudo-random number generator (PRNG), which expands a short seed into a
long sequence of cryptographically secure random bits.

Norwegian National Security Authority (NSM) 8

NSM Cryptographic Recommendations 2024 draft

Both gathering the random bits from a physical process and estimating the entropy
of this process is difficult. It is therefore recommended to use a pre-existing solution.
Many devices provide specialized hardware for generating cryptographically secure random
numbers, which should be used when available.

If such hardware is not available, great care must be taken that the physical process
does indeed generate sufficient entropy. Deciding on this process and the PRNG should be
done in consultation with an expert, and NIST SP 800-90A [21] and NIST SP 800-90B [22]
provide further information relevant to such a discussion.

4 Quantum computing

The development of quantum computers of sufficient capability, referred to as Cryptanalyt-
ically Relevant Quantum Computers (CRQCs), will have a significant impact on the cryp-
tographic mechanisms in use today, particularly for asymmetric cryptography. A quantum
computer uses the principles of quantum mechanics to solve certain, but not all, problems
faster than what is possible on a classical computer.

The most common asymmetric algorithms in use as of the time of writing are broken
by CRQCs. This can not be mitigated by simply increasing the parameters, and there is
therefore a need to use new algorithms which are not vulnerable to attacks by quantum
computers. For symmetric cryptography, the impact is limited. There are generic quantum
attacks which give certain improvements over the best known classical attacks, but these
attacks require even more powerful quantum computers, and they will not achieve a signif-
icant improvement compared to classical attacks in practice. There is no need to change
the algorithms used, but one might in future need to increase the size of the parameters.

The development of a CRQC is an area of active research, and as such it is hard to
predict when, or even if, a CRQC will be developed. NSM works under the conservative
assumption that one should be prepared for the existence of a CRQC in the early 2030s.
This is not a prediction, but is at the lower end of reasonable estimates for when a CRQC
might be available.

There is a need to migrate to quantum-resistant cryptography. It is recommended to
start the migration process as soon as possible, which first and foremost involves getting
an overview of one’s cryptographic inventory, see Section For further information and
guidance, the interested reader is invited to look at nsm.no/kvantemigrasjon.

When the actual change to quantum-resistant cryptography occurs will be different
from organization to organization. It is important to note that the pre-quantum versions
are being phased out. If one decides to use cryptography which is not quantum-resistant,
it is important that one can easily and painlessly upgrade when that time comes.

The following paragraphs detail how cryptography can be vulnerable today even though
a quantum computer is some time away, and where these scenarios are relevant switching
to quantum-resistant cryptography is rather urgent.

Harvest now, decrypt later When information is encrypted and intended to be kept
secret for a long time, it might be vulnerable to future developments in quantum computing.
If a message encrypted today needs to remain secret for 30 years, an attacker can store the
encrypted file now and decrypt it when a CRQC is available. If this CRQC is built within
20 years, the message has not been kept secret for as long as it should. For information
which must remain confidential beyond the early 2030s, one should therefore switch to
quantum-resistant algorithms as soon as possible.

Norwegian National Security Authority (NSM) 9

https://nsm.no/kvantemigrasjon

NSM Cryptographic Recommendations 2024 draft

Long-lived systems There are cases where one needs to deploy a system which will be
operating beyond the early 2030s, but where it is impractical or impossible to modify all
cryptographic algorithms in that system. In these cases, it is crucial that those algorithms
which cannot be changed are resistant to quantum computers.

Norwegian National Security Authority (NSM) 10

NSM Cryptographic Recommendations 2024 draft

Part III
Algorithms

5 Symmetric cryptography

Symmetric cryptography concerns situations where two parties wish to communicate se-
curely and they have access to the same shared information apart from any messages they
wish to send. This typically includes a pre-established shared key that must be kept secret.

5.1 General purpose encryption

Applications of encryption often require more than just confidentiality of the underlying
message. It is typically necessary to have guarantees of both integrity (meaning that the
message was not modified in transit) and authenticity (meaning that the message came
from someone with the secret key). These two properties are achieved by computing
an authentication tag, and transmitting it alongside the ciphertext. An encryption scheme
which fulfills all of these properties is called an authenticated encryption scheme. Since they
are crucial for most applications, it is recommended to use an authenticated encryption
scheme for general use. The recommended encryption scheme is:

Algorithm | Block cipher | IV length | Tag length Standards
AES-128 : . FIPS 197 |[§]
ABSGOM T \pgosg | 0Pt | 128Dt \iem op 500-38D (6] |

AES-GCM is built by using a block cipher, AES, in the GCM mode of operation. A
block cipher encrypts blocks of fixed size, and a mode of operation describes how one can
repeatedly use a block cipher to encrypt messages of different lengths.

An important feature of encryption schemes is that even if the same message is en-
crypted multiple times with the same key, the resulting ciphertext should be different.
This is typically achieved by adding an initialization vector (IV) which is different for each
sent message, and using this IV to compute the ciphertext.

There are a number of important steps that any implementation of AES-GCM needs
to follow to be secure:

e The ciphertext must not be decrypted before the authentication tag is verified.

e The same key and the same IV must not be used to encrypt two different messages,
and great care must be taken to ensure that this does not happen. It is recommended
to use the deterministic IV construction as specified in Section 8.2.1 of |16], and the
key must be changed before an IV repeats. If the IVs are instead selected at random,
the TV should consist of 96 cryptographically secure random bits (see Section, and
each key should encrypt no more than 232 messages.

e The message encrypted with one key and one IV must be at most 232 — 2 blocks of
128 bits, which is approximately 64 GiB.

Norwegian National Security Authority (NSM) 11

NSM Cryptographic Recommendations 2024 draft

K 1V K 1V
C —
M — . M
Encrypt 7 —| Decrypt or
AD — T n
AD —

Figure 1: A schematic description of an AEAD scheme

Additional details

AES-GCM is an authenticated encryption with associated data (AEAD) scheme. This
means that AES-GCM allows for the possibility of sending along additional data which
will not be kept confidential, but which will be protected against modifications. This can
include metadata describing the location of the recipient, which may need to be visible to
ensure that the message is delivered to the correct place. If the authentication tag is valid,
one can be confident that neither the ciphertext nor the additional data has been modified
in transit.

Section describes the inputs and outputs of an AEAD scheme. K refers to the
secret key, and M and AD are the message and associated data, respectively. C' is the
ciphertext, the encryption of M. T is the authentication tag, ensuring that neither the
ciphertext or associated data are modified in transit. 1 is a special error symbol which
indicates that the tag is not valid, and thus either the ciphertext or associated data were
modified in transit.

It is possible to use AES-GCM with no message and just additional data, simply
ensuring the integrity of whatever is transmitted. However, if confidentiality is never
needed, a message authentication code recommended in Section is preferred. This is
because the properties of AES-GCM are not ideal in this context. Unlike the schemes in
Section [5.4] it requires an IV for each message sent, and its security degrades when a lot
of information is protected with the same key.

If the ciphertext is decrypted before the authentication tag is verified, this provides
an opportunity for an attacker to submit invalid ciphertexts and observe what happens
during decryption, and this can potentially be used to find the secret message. It is
therefore crucial to verify the authentication tag before decrypting the ciphertext, and
abort decryption if authentication fails.

5.2 Disk encryption

General purpose encryption is, as the name suggests, useful for most use cases where en-
cryption is needed. However, there are cases where the features of such an encryption
mode are inconvenient. In order to achieve the security properties required of an authen-
ticated encryption scheme, the ciphertext needs to be longer than the plaintext and it is
not possible to decrypt one part of the ciphertext. This makes such a scheme unsuitable
for the purposes of encrypting an entire storage medium, such as a hard disk. This is due
to the properties of how such a storage medium is typically organized. In order to encrypt
individual files, the recommendations in Section [5.1] remain valid.

For disk encryption, it is recommended to use a mode of operation which does not
provide complete integrity protection. The recommended encryption scheme is:

Norwegian National Security Authority (NSM) 12

NSM Cryptographic Recommendations 2024 draft

Algorithm | Block cipher Standards
AES-128 FIPS 197 [8]
XTS-AES AES-256 NIST SP 800-38E |[17]

A key for XTS-AES consists of two different keys for the underlying block cipher. XTS-
AES uses a tweak to encrypt each 128-bit block, which serves a similar purpose to an IV
in AES-GCM. The same tweak must never be used twice with the same key.

5.3 Hashing

Hash functions are functions that take a message of arbitrary length as input and produce
an n-bit message digest, called a hash, as output. The recommended hash functions are:

Parameter sets Standards
SHA3-256
SHA3-384
SHA3-512
SHA-256

SHA-512/256
SHA-384

SHA-512

Algorithm

SHA-3 FIPS 202 [10]

SHA-2 FIPS 180-4 [6]

Hash functions are often used internally in other schemes or protocols, so when a
hash function is called for elsewhere, one of these hash functions should be used. The
sole exception is when hashing passwords, where the guidance from Section should be
followed.

SHA-3 is a newer hash function which make several related constructions easier, and
is a core part of the new quantum-resistant algorithms. Since it is relatively new, it is not
very widely used and well-developed implementations of SHA-3 are comparatively rare.
SHA-2 is more firmly established, and it is used a lot more and SHA-2 implementations
are widely available. It will therefore often be necessary to use SHA-2 for interoperability
purposes. For example, SHA-2 is the only hash function that can be used in TLS.

Additional details

Hash functions have several different purposes. One important purpose has to do with the
integrity of a message. If the recipient of a message has a correct hash of that message,
anyone who wants to change the message needs to find a message which hashes to the same
value, which is practically impossible. Hash functions have also found applications in many
different areas in cryptography, such as digital signatures and key derivation functions.

5.4 Message authentication

A message authentication code (MAC) is designed to provide integrity and authenticity. A
MAC is a short tag computed based on some message and a secret key, for which it should
be hard to come up with a different message which gets the same tag. A message authen-
tication code does not provide any confidentiality guarantees of the message, and therefore
for most purposes an authenticated encryption mode should be used. The recommended
message authentication codes are:

Norwegian National Security Authority (NSM) 13

NSM Cryptographic Recommendations 2024 draft

Algorithm | Key length | Tag length Standards
KMAC : . NIST SP 800-185 |14]
> 5 | > 3 —
HMAC 2 128 bits | > 128 bits FIPS 198-1 [9]

Note that there are two versions of KMAC, KMAC128 and KMAC256, which aim for
different security levels. If one uses KMAC256, the length of the key should be at least
256 bits long.

KMAC is based on the Keccak permutation which forms the basis of the SHA-3 hash
function, so it is the natural choice if one uses SHA-3. If one uses SHA-2 instead, HMAC is
the natural choice. HMAC makes use of a hash function internally, and it is recommended
to use SHA-256.

5.5 Key derivation

Key derivation functions (KDFs) are used to derive keys for use in symmetric cryptographic
schemes. KDFs take some secret values (such as a shared secret from a Diffie-Hellman style
key exchange) and potentially some additional public values as input, and output one or
more symmetric keys of the desired length. Key derivation functions make it possible to
update key material in order to avoid using the same key for a long period of time. The
recommended key derivation functions are:

Algorithm Standard
Section 4 of
KMAC NIST SP 800—56CJ19L
HKDF RFC 5869 |2]

KMAC is the natural choice if one uses SHA-3, and HKDF is the natural choice if one
uses SHA-2. HKDF uses HMAC internally, and it is recommended to use HMAC with
SHA-256 as the internal hash function.

5.6 Password hashing

Passwords need to be treated carefully. The recommendation is to store passwords in a
salted and hashed form, using a hash function specially intended for this purpose. This
means that a random string, called a salt, which is stored in the database is added to the
password, and then this combined string is passed through a hash function. This ensures
that an attacker must attempt to guess each individual user’s password. To verify if a
password is correct, one adds the salt, hashes the combined string, and checks that the
hash one gets is identical to the one already stored. The recommended password hash
functions are:

Algorithm Parameters Sizes Standard
Argon2id m=2"l p=4t=1 > 128-bit salt | RFC 9106 [1]
PBKDF2 | Iteration count > 600 000 | > 256-bit tag || RFC 8018 [3|

PBKDEF2 is most commonly used with HMAC and SHA-256 (and the suggested pa-
rameter is based on this), but any recommended MAC in Section is recommended for
this purpose as well.

Setting correct parameters is more difficult for password hash functions than for other
cryptography, and is best done in consultation with an expert. The parameters should be
as large as possible without making the time it takes to verify a login attempt unreasonably
long.

Norwegian National Security Authority (NSM) 14

NSM Cryptographic Recommendations 2024 draft

Argon2id has better security properties than PBKDF2, and Argon2id is therefore the
preferred password hash function. However, PBKDF2 is better established, and imple-
mentations of PBKDF2 are more widely available.

6 Asymmetric cryptography

Asymmetric cryptography describes the setting where parties do not have a shared secret
key, but parties have a pair of mathematically related private and public keys which perform
different operations in a cryptographic scheme.

As detailed in Section asymmetric schemes in use today are vulnerable to the
development of a CRQC, and thus there is a need to provide quantum-resistant asym-
metric schemes. Because different organizations have individual timelines for migration
to quantum-resistant cryptography, recommendations for both quantum-vulnerable and
quantum-resistant schemes are given.

The main recommendations for quantum-resistant cryptography are based on mathe-
matical structures known as lattices. While schemes based on lattices appear to be resistant
to quantum computers, there is not the level of confidence in them as there is in the other
cryptographic mechanisms recommended in this document. There is a concern about the
possibility of future improvements in attacks against lattice cryptography, and there is a
concern about potential vulnerabilities in immature implementations.

For this reason, two additional precautions are recommended. It is recommended to
use both a quantum-vulnerable and a quantum-resistant algorithm in hybrid mode, where
one uses both algorithms together and combine the results in such a way that the hybrid
scheme is secure provided at least one of the two initial schemes are secure. This ensures
that one does not lose any security by changing to a quantum-resistant scheme, as one
still has the security of the quantum-vulnerable scheme to fall back on. Additionally, the
recommended parameters are rather conservative to account for potential improvements
in cryptanalysis.

Switching to quantum-resistant cryptography comes with an additional communication
cost. The recommended quantum-vulnerable algorithms require around 100 bytes to be
transmitted between parties, whereas the quantum-resistant algorithms require between
2 and 7 kilobytes. This additional cost can have an impact on certain systems, and is
important to be aware of.

6.1 Key establishment

Asymmetric key establishment schemes allow two parties, often called Alice and Bob, to
agree on a shared secret key. Using the public and private keys of Alice and/or Bob, the
two can send messages back and forth, and end up with a shared symmetric key that no
one besides Alice and Bob learns.

Public keys often need to be authenticated, meaning that they are associated with the
correct entity. This is important to ensure that no attacker can impersonate legitimate
users. If the public keys are not authenticated some other method, such as password-based
or multi-factor authentication, must be used to ensure authenticity.

It is recommended to provide forward secrecy whenever possible. Forward secrecy
means that an attacker who gains access to the current secrets of a user is unable to
decrypt messages that were sent in the past. This is typically achieved by periodically
agreeing on a new random secret key using a key establishment scheme (typically using
long-term keys for authentication only), and deleting any previous keys.

Norwegian National Security Authority (NSM) 15

NSM Cryptographic Recommendations 2024 draft

A related notion is that of post-compromise security, which guarantees that an attacker
who gains access to the current secrets of a user cannot use this to decrypt future messages.
Both the definition, and how to achieve this, is more technical, but it is a useful property.
Together with forward secrecy, post-compromise security helps reduce the value of each
key, and significantly reduces the consequences of a successful attack.

Quantum-vulnerable

The recommended quantum-vulnerable key establishment scheme is:

Algorithm | Elliptic curve Standards
P-256 NIST SP 800-56A [18] |
ECDH P-384 NIST SP 800-186 |15

It is important to choose the correct algorithm depending on whether the exchange
involves static or ephemeral keys. A static key is a key that is used for a longer period of
time, and is typically authenticated in some form, such as with a certificate from a third
party. An ephemeral key is generated for one specific key exchange, and is typically not
authenticated.

Quantum-resistant

The recommended quantum-resistant key establishment scheme is a hybrid scheme which
consists of:

Parameter sets | Elliptic curve

Algorithm for ML-KEM for ECDH

Standards

FIPS 203 draft |11]
ML-KEM-768 P-256 NIST SP 800-56A [18]
ML-KEM-1204 P-384 NIST SP 800-186 |15]
KEM combiner draft [5|

ML-KEM+ECDH+KMAC

The recommended scheme establishes one key using ML-KEM and another using ECDH.
It then uses these keys, along with transmitted values during the key establishments, as
inputs to KMAC, which functions as a KEM combiner in this context. The combiner
outputs one single key, and its properties guarantees that no attacker can find this key as
long as one of ML-KEM and ECDH are secure.

Pre-shared keys

There is an alternative approach to get quantum-resistant key establishment which should
only be used as a stopgap measure. This relies on the two parties having a pre-shared
secret key which provides the quantum-resistant element. It is crucial that this key is not
shared by using a quantum-vulnerable key establishment mechanism. This key can then
be updated using a quantum-vulnerable key establishment, ensuring that the same key
is not reused and stored for a long period of time. This is inferior to using a quantum-
resistant key establishment, but this pre-shared key provides an added level of security
against quantum computers until one is able to migrate.

Norwegian National Security Authority (NSM) 16

NSM Cryptographic Recommendations 2024 draft

6.2 Digital signatures

A digital signature, much like a regular signature, is meant to certify that a specific message
comes from a specific entity. An entity has a key pair consisting of a private signing key
and a public verification key. A digital signature is generated using the signing key, and
can be verified by anyone with the verification key. If a signature passes the verification
check, one can be confident that the message indeed came from the entity associated with
the public key.

Quantum-vulnerable

The recommended quantum-vulnerable digital signature schemes are:

Algorithm Parameters Standards
P-256 FIPS 186-5 |7]
ECDSA P-384 NIST SP 800-186 [15] |
n > 3000 bits RFC 8017 |4]
RSASSA-PSS 1 o157 _ 926 FIPS 186-5 |7]

The Elliptic Curve Digital Signature Algorithm (ECDSA) requires a value k between
1 and a large number n for each signature. This value can either be generated at random,
or computed deterministically from the message and the private key. If this number is
generated at random, it must be generated according to Appendix A.3 of FIPS 186-5 7|
using cryptographically secure random numbers (see Section[3)). If this number is computed
deterministically, it must be computed according to Appendix A.3.3 of FIPS 186-5 [7].
This k£ must be kept secret, and also protected against any kind of leakage, such as via
side-channel attacks.

The definition of the RSASSA-PSS signature scheme is found in RFC 8017 [4], but a
number of additional restrictions which should be followed are found in FIPS 186-5 |7], in
particular when it comes to properly generating RSA key pairs.

ECDSA is a more efficient algorithm by most metrics, and safely implementing RSA
is particularly challenging. However, RSA is a widely used industry standard for digital
signatures, and it is in certain cases the only supported signature scheme. For these reasons,
it is included here, but ECDSA should be preferred.

Quantum-resistant

The recommended quantum-resistant digital signature schemes are:

Algorithm Parameters Standards
ML-DSA | ECDSA || FIPS 204 draft [12]
ML-DSA+ECDSA | ML-DSA-65 | P-256 | FIPS 186-5 |7]
ML-DSA-87 1 P-384 || NIST SP 800-186 [15]
SLH-DSA See discussion below FIPS 205 draft [13] |

For the first recommendation, a signature of a message must consist of both an ECDSA
signature and an ML-DSA signature, and both component signatures need to be valid
for the entire signature to be valid. It is therefore crucial that the signature verification
algorithm verifies both signatures. Furthermore, keys should be generated specifically for
this hybrid scheme and not used for non-hybrid signature schemes as well.

SLH-DSA is a signature scheme based on hash functions, which is secure as long as
the underlying hash function is secure. Since hash function design and implementation is

Norwegian National Security Authority (NSM) 17

NSM Cryptographic Recommendations 2024 draft

well-understood, it is recommended to use SLH-DSA without adding a quantum-vulnerable
signature. However, SLH-DSA signatures are quite large (8-50kB depending on the param-
eter set) and signing messages is relatively slow. This makes SLH-DSA an option which is
unsuitable in many cases, but the applications where the performance drawbacks are not a
concern it is a good choice due to the confidence one has in its security. FIPS 205 contains
12 parameter sets for SLH-DSA. All parameter sets are recommended, but choosing the
appropriate set for a specific use case is best done in consultation with an expert.

7 Quick reference

Below is a reference list, briefly describing each use case and the algorithm(s) recommended
for that use case. A short summary of the recommended parameters are given, except when
quickly summarizing the recommended parameters can not be done succinctly. Further de-
tails about all recommendations are found in the relevant sections earlier in this document.

Symmetric cryptography

Further information, including descriptions of the parameters and references to standards
documents, about the following schemes can be found in Section

Use case Algorithms Parameters
AES-128/256
Encrypting messages between two parties | AES-GCM 96 bit IV
who share a secret key 128 bit tag
Encrypting data on disk XTS-AES AES-128/256
SHA-3

Hashing information into a small digest Output size > 256 bits

SHA-2
KMAC Key length > 128 bits
HMAC Tag length > 128 bits

Integrity checking

.. KMAC

Deriving keys from a secret value HKDF
: Argon2id
Hashing passwords PBKDF2

Asymmetric cryptography

Further information, including detailed descriptions of the parameters and references to
standards documents, about the following schemes can be found in Section [6]

Quantum-vulnerable

Use case Algorithms | Parameters
Establishing a shared secret ECDH P-256/384
between two parties

ECDSA P-256/384

Digitally signing a message RSA n > 3000 bits

Quantum-resistant

Note that the first two recommendations are hybrid schemes, so each recommendation
consists of two algorithms and a way to combine them.

Norwegian National Security Authority (NSM) 18

NSM Cryptographic Recommendations 2024 draft

Use case Algorithms Standard
ML-KEM + ECDH | ML-KEM-768/1024
+ KMAC + P-256/384

ML-DSA-65/87
Digitally signing a message ECDSA + ML-DSA + P-256/384

SLH-DSA

Establishing a shared secret
between two parties

8 Protocols

A cryptographic protocol describes how multiple parties interact and use cryptographic
schemes to achieve a specific security objective. Examples include secure communication
between two people, between a user and a website, or between a developer and a remote
server.

Designing protocols requires expertise, and it is recommended to use pre-existing and
modern protocols that are well-suited for the application. Some examples are TLS 1.3 and
IPSec. When using protocols which allow for the use of different algorithms, one should
use the algorithms recommended in this document.

NSM will release more specific recommendations for some very common protocols at a
future time.

Norwegian National Security Authority (NSM) 19

NSM Cryptographic Recommendations 2024 draft

References

[1] Alex Biryukov et al. Argon2 Memory-Hard Function for Password Hashing and Proof-
of-Work Applications. RFC 9106. Sept. 2021. DOI: [10.17487/RFC9106. URL: https:
//www.rfc-editor.org/info/rfc9106.

[2] Dr. Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Ezpand Key Deriva-
tion Function (HKDF'). RFC 5869. May 2010. DOI: 10.17487/RFC5869. URL: https:
//www.rfc-editor.org/info/rfc5869.

[3] Kathleen Moriarty, Burt Kaliski, and Andreas Rusch. PKCS #5: Password-Based
Cryptography Specification Version 2.1. RFC 8018. Jan. 2017. DpoI: |10 . 17487 /
RFC8018. URL: https://www.rfc-editor.org/info/rfc8018.

[4] Kathleen Moriarty et al. PKCS #1: RSA Cryptography Specifications Version 2.2.
RFC 8017. Nov. 2016. DOI: 10.17487/RFC8017. URL: https://www.rfc-editor.
org/info/rfc8017.

[5] Mike Ounsworth, Aron Wussler, and Stavros Kousidis. Combiner function for hybrid
key encapsulation mechanisms (Hybrid KEMs). Internet-Draft draft-ounsworth-cfrg-
kem-combiners-05. Work in Progress. Internet Engineering Task Force, Jan. 2024.
14 pp. URL: https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-
combiners/05/.

[6] National Institute of Standards and Technology. FIPS 180-4, Secure Hash Standard
(SHS). 2015. URL: https://doi.org/10.6028/NIST.FIPS.180-4.

[7] National Institute of Standards and Technology. FIPS 186-5, Digital Signature Stan-
dard (DSS). 2023. URL: https://doi.org/10.6028/NIST.FIPS. 186-5.

[8] National Institute of Standards and Technology. FIPS 197, Advanced Encryption
Standard (AES). 2001. URL: https://doi.org/10.6028/NIST.FIPS.197-upd1.

[9] National Institute of Standards and Technology. FIPS 198-1, The Keyed-Hash Mes-
sage Authentication Code (HMAC). 2008. URL: https://doi.org/10.6028/NIST.
FIPS.198-1.

[10] National Institute of Standards and Technology. FIPS 202, SHA-3 Standard: Permutation-

Based Hash and Extendable-Output Functions. 2015. URL: https://doi.org/10.
6028/NIST.FIPS.202

[11] National Institute of Standards and Technology. FIPS 203 (Initial Public Draft),
Module-Lattice-Based Key-Encapsulation Mechanism Standard. 2023. URL: https :
//doi.org/10.6028/NIST.FIPS.203.ipd.

[12] National Institute of Standards and Technology. FIPS 20/ (Initial Public Draft),
Module-Lattice- Based Digital Signature Standard. 2023. URL: https://doi.org/10.
6028/NIST.FIPS.204.1ipd.

[13] National Institute of Standards and Technology. FIPS 205 (Initial Public Draft),
Stateless Hash-Based Digital Signature Standard. 2023. URL: https://doi.org/10.
6028/NIST.FIPS.205.1ipd.

[14] National Institute of Standards and Technology. NIST SP 800-185, SHA-3 Derived
Functions: ¢cSHAKE, KMAC, TupleHash, and ParallelHash. 2016. URL: https://
doi.org/10.6028/NIST.SP.800-185.

[15] National Institute of Standards and Technology. NIST SP 800-186, Recommenda-
tions for Discrete Logarithm-based Cryptography: Elliptic Curve Domain Parameters.
2023. URL: https://doi.org/10.6028/NIST.SP.800-186.

Norwegian National Security Authority (NSM) 20

https://doi.org/10.17487/RFC9106
https://www.rfc-editor.org/info/rfc9106
https://www.rfc-editor.org/info/rfc9106
https://doi.org/10.17487/RFC5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://doi.org/10.17487/RFC8018
https://doi.org/10.17487/RFC8018
https://www.rfc-editor.org/info/rfc8018
https://doi.org/10.17487/RFC8017
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/05/
https://datatracker.ietf.org/doc/draft-ounsworth-cfrg-kem-combiners/05/
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.186-5
https://doi.org/10.6028/NIST.FIPS.197-upd1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.198-1
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.204.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.FIPS.205.ipd
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-186

NSM Cryptographic Recommendations 2024 draft

[16] National Institute of Standards and Technology. NIST SP 800-38D, Recommendation
for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC.
2007. URL: https://doi.org/10.6028/NIST.SP.800-38D.

[17] National Institute of Standards and Technology. NIST SP 800-38E, Recommendation
for Block Cipher Modes of Operation: the XTS-AES Mode for Confidentiality on
Storage Devices. 2010. URL: https://doi.org/10.6028/NIST.SP.800-38E.

[18] National Institute of Standards and Technology. NIST SP 800-56A Rev. 3, Rec-
ommendation for Pair-Wise Key-Fstablishment Schemes Using Discrete Logarithm
Cryptography. 2018. URL: https://doi.org/10.6028/NIST.SP.800-56Ar3.

[19] National Institute of Standards and Technology. NIST SP 800-56C Rev. 2, Recom-
mendation for Key-Deriwvation Methods in Key-FEstablishment Schemes. 2020. URL:
https://doi.org/10.6028/NIST.SP.800-56Cr2.

[20] National Institute of Standards and Technology. NIST SP 800-57 Part 1 Rev. 5,
Recommendation for Key Management: Part 1 — General. 2020. URL: https://doi.
org/10.6028/NIST.SP.800-57pt1r5.

[21] National Institute of Standards and Technology. NIST SP 800-90A Rev. 1, Recom-
mendation for Random Number Generation Using Deterministic Random Bit Gen-
erators. 2015. URL: https://doi.org/10.6028/NIST.SP.800-90Ar1.

[22] National Institute of Standards and Technology. NIST SP 800-90B, Recommendation
for the Entropy Sources Used for Random Bit Generation. 2018. URL: https://doi.
org/10.6028/NIST.SP.800-90B.

A Standards and standards organizations

This document contains references to standards. These are documents which describe a
certain cryptographic algorithm in detail. There are a number of standards organizations
which produce such standards. This document refers to standards from NIST and the
IETF. NIST is the National Institute of Standards and Technology, an agency of the
United States Department of Commerce. The IETF is the Internet Engineering Task
Force, the organization responsible for the technical standards which govern the Internet.
They do not dictate what NSMs recommendations are, and their role in this document is
solely to provide definitions of the cryptographic algorithms that are recommended. The
standards published by these organizations are typically not a solely internal endeavour,
but are based on open work by academics, engineers, governments and other interested
parties.

Norwegian National Security Authority (NSM) 21

https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38E
https://doi.org/10.6028/NIST.SP.800-56Ar3
https://doi.org/10.6028/NIST.SP.800-56Cr2
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90B
https://doi.org/10.6028/NIST.SP.800-90B

	I Introduction
	II General advice
	Cryptographic computing
	Implementations
	Side-channel attacks
	Cryptographic inventory
	Cryptographic agility

	Key management
	Key generation
	Certificates
	Key distribution
	Key use

	Random number generation
	Quantum computing

	III Algorithms
	Symmetric cryptography
	General purpose encryption
	Disk encryption
	Hashing
	Message authentication
	Key derivation
	Password hashing

	Asymmetric cryptography
	Key establishment
	Digital signatures

	Quick reference
	Protocols
	Standards and standards organizations

